Characterization of a rat Na+-dicarboxylate cotransporter.

نویسندگان

  • X Z Chen
  • C Shayakul
  • U V Berger
  • W Tian
  • M A Hediger
چکیده

The metabolism of Krebs cycle intermediates is of fundamental importance for eukaryotic cells. In the kidney, these intermediates are transported actively into epithelial cells. Because citrate is a potent inhibitor for calcium stone formation, excessive uptake results in nephrolithiasis due to hypocitraturia. We report the cloning and characterization of a rat kidney dicarboxylate transporter (SDCT1). In situ hybridization revealed that SDCT1 mRNA is localized in S3 segments of kidney proximal tubules and in enterocytes lining the intestinal villi. Signals were also detected in lung bronchioli, the epididymis, and liver. When expressed in Xenopus oocytes, SDCT1 mediated electrogenic, sodium-dependent transport of most Krebs cycle intermediates (Km = 20-60 microM), including citrate, succinate, alpha-ketoglutarate, and oxaloacetate. Of note, the acidic amino acids L- and D-glutamate and aspartate were also transported, although with lower affinity (Km = 2-18 mM). Transport of citrate was pH-sensitive. At pH 7.5, the Km for citrate was high (0.64 mM), whereas at pH 5.5, the Km was low (57 microM). This is consistent with the concept that the -2 form of citrate is the transported species. In addition, maximal currents at pH 5.5 were 70% higher than those at pH 7.5, and our data show that the -3 form acts as a competitive inhibitor. Simultaneous measurements of substrate-evoked currents and tracer uptakes under voltage-clamp condition, as well as a thermodynamic approach, gave a Na+ to citrate or a Na+ to succinate stoichiometry of 3 to 1. SDCT1-mediated currents were inhibited by phloretin. This plant glycoside also inhibited the SDCT1-specific sodium leak in the absence of substrate, indicating that at least one Na+ binds to the transporter before the substrate. The data presented provide new insights into the biophysical characteristics and physiological implications of a cloned dicarboxylate transporter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient.

Basolateral uptake of organic anions in renal proximal tubule cells is indirectly coupled to the Na(+) gradient through Na(+)-dicarboxylate cotransport and organic anion/dicarboxylate exchange. One member of the organic anion transporter (OAT) family, Oat1, is expressed in the proximal tubule and is an organic anion/dicarboxylate exchanger. However, a second organic anion carrier, Oat3, is also...

متن کامل

Sodium-coupled transporters for Krebs cycle intermediates.

Krebs cycle intermediates such as succinate, citrate, and alpha-ketoglutarate are transferred across plasma membranes of cells by secondary active transporters that couple the downhill movement of sodium to the concentrative uptake of substrate. Several transporters have been identified in isolated membrane vesicles and cells based on their functional properties, suggesting the existence of at ...

متن کامل

Cloning and functional characterization of a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain.

Neurons contain a high-affinity Na(+)/dicarboxylate cotransporter for absorption of neurotransmitter precursor substrates, such as alpha-ketoglutarate and malate, which are subsequently metabolized to replenish pools of neurotransmitters, including glutamate. We have isolated the cDNA coding for a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain, called mNaDC-3. The mRNA coding ...

متن کامل

Water transport by the renal Na(+)-dicarboxylate cotransporter.

This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 sh...

متن کامل

Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney.

The sodium-dicarboxylate cotransporter of the renal proximal tubule, NaDC-1, reabsorbs filtered Krebs cycle intermediates and plays an important role in the regulation of urinary citrate concentrations. (1) Low urinary citrate is a risk factor for the development of kidney stones. As an initial step in the characterization of NaDC-1 regulation, the genomic structure and functional properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 33  شماره 

صفحات  -

تاریخ انتشار 1998